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SUMMARY

The paper proposes a new translation algorithm that translates a hybrid system described as a discrete hybrid
automaton (DHA) into an equivalent piecewise affine (PWA) system. The translation algorithm exploits,
among others, a new technique for cell enumeration in hyperplane arrangement, all proposed in this paper.
The new translation technique enables the transfer of several analysis and synthesis tools developed for
PWA systems to a DHA class of hybrid systems.
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1. INTRODUCTION

Hybrid systems are dynamic systems that involve the interaction of continuous dynam-
ics (modelled as differential or difference equations) and discrete dynamics (modelled
by finite state machines). Hybrid systems have been the topic of intense research activ-
ity in recent years, primarily because of their potential importance in applications, e.g.
the process industry. Hybrid models are important to a number of problems in system
analysis, such as computation of trajectories, control, stability and safety analysis, etc.

Mathematical models represent the basis to any system analysis and design such
as simulation, control, verification, etc. Several modelling formalisms for hybrid dy-
namical systems have been proposed in the literature [1, 10, 17] and each class of
models is usually appropriate only for solving a certain problem. Among others, we
would like to emphasise the Piecewise Affine (PWA) systems [21], Mixed Logical
Dynamical (MLD) systems [7] and Discrete Hybrid Automata (DHA) [24], which are
receiving increasing attention by the control community. The importance lies in the
equivalent relations among them that allow the transfer of all analysis and synthesis
tools developed for one particular class to any of the other equivalent subclasses of
hybrid systems. In [14] the authors prove the equivalence between PWA, MLD, Lin-
ear Complementarity (LC) [15] and other classes of hybrid systems. Attention has
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to be given also to DHA systems, which can be translated into an MLD modelling
framework using the tool HYSDEL (HYbrid System DEscription Language) [24].

In this paper, a new technique for translation of a hybrid dynamical system, mod-
elled as a DHA system, into a PWA system will be presented. The translation algo-
rithm takes into account a DHA model described by the HYSDEL modelling lan-
guage. A DHA model is translated into a special structure, also containing an MLD
model of a system, using the HYSDEL tool. Using the resulting structure, a PWA sys-
tem is built. The paper is organised as follows: In Section 2, we introduce DHA, MLD
and PWA systems. A DHA system represents the basis for transformation into MLD
and PWA systems. In Section 3, we introduce several improvements and novelties to
the technique for translating DHA into a PWA model. The efficiency of the proposed
translation technique, tested on a car example adopted by several authors [4, 5, 13], is
presented in Section 4. The conclusions are given in Section 5.

2. DHA, MLD AND PWA SYSTEMS

The emphasis will be given on the discrete-time representation of DHA, MLD and
PWA systems. The algorithms to obtain a discrete-time PWA representation of an
MLD system, and vice versa, are reported in [8, 4, 5]. The algorithm to obtain a
discrete-time PWA representation of a DHA system is reported in [13]. The same topic
will be addressed in this paper where we propose a new technique for translating DHA
systems into PWA, which performs better than the one presented in [13]. Because of
the close relations between all three modelling formalisms (DHA (HYSDEL)→ MLD,
MLD → PWA, DHA (HYSDEL) → (MLD) → PWA)) and, due to better understand-
ing on the topic, short descriptions to each of the three formalisms will be provided in
the sequel.

2.1. Discrete Hybrid Automata (DHA)

According to [24] a Discrete hybrid automaton (DHA) is the interconnection of a fi-
nite state machine (FSM), which provides the discrete part of the hybrid system, with
a switched affine system (SAS) providing the continuous part of the hybrid dynamics.
The interaction between the two is based on two connecting elements: the event gen-
erator (EG), which extracts logic signals from the continuous part, and mode selector,
which defines the mode (continuous dynamics) of the SAS based on logic variables
(states, inputs and events). The DHA system is shown on Figure 1.

A switched affine system (SAS) represents a sampled continuous system that is
described by the following set of linear affine equations:
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Fig. 1. A discrete hybrid automaton (DHA)

xr(k + 1) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k) (1a)

yr(k) = Ci(k)xr(k) + Di(k)ur(k) + gi(k), (1b)

where k ∈ Z≥0 represents the independent variable (time step) (Z≥0 � {0, 1, ...} is a
set of nonnegative integers), xr ∈ Xr ⊆ R

nr is the continuous state vector, ur ∈ Ur ⊆
R

mr is the continuous input vector, yr ∈ Yr ⊆ R
pr is the continuous output vector,

{Ai, Bi, fi, Ci,Di, gi}i∈I is a set of matrices of suitable dimensions, and i(k) ∈ I is
a variable that selects the linear state update dynamics. A SAS of the form (1) changes
the state update equation when the switch occurs, i.e. i(k) ∈ I changes. An SAS can
be also rewritten as the combination of linear terms and if-then-else rules. The state-
update function (1a) can also be written as:

z1(k) =

{
A1xr(k) + B1ur(k) + f1 if i(k) = 1
0 otherwise

(2a)

...

zs(k) =

{
Asxr(k) + Bsur(k) + fs if i(k) = s

0 otherwise
(2b)

xr(k + 1) =
s∑

i=1

zi(k). (2c)
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An event generator (EG) generates a logic signal according to the satisfaction of
linear affine constraints:

δe(k) = fH(xr(k), ur(k), k), (3)

where fH : R
nr × R

mr × Z≥0 → D ⊆ {0, 1}ne is a vector of descriptive functions
of a linear hyperplane. The relation fH for time events is modelled as [δi

e(k) = 1] ↔
[kTs ≥ ti], where Ts is the sampling time, while for threshold events is modelled as
[δi

e(k) = 1] ↔ [aT
i xr(k) + bT

i ur(k) ≤ ci], and where ai, bi, ci represent the parame-
ters of a linear hyperplane. δi

e denotes the i-th component of a vector δe(k).
A finite state machine (FSM) is a discrete dynamic process that evolves according

to a logic state update function:

xb(k + 1) = fB(xb(k), ub(k), δe(k)), (4)

where xb ∈ Xb ⊆ {0, 1}nb is the binary state (we use the term binary instead of
Boolean to emphasise the fact that xb ∈ {0, 1}nb ), ub ∈ Ub ⊆ {0, 1}mb is the binary
input, δe(k) is the input coming from the EG, and fB : Xb × Ub ×D → Xb is a deter-
ministic logic function. An FSM may have also associated binary output

yb(k) = gB(xb(k), ub(k), δe(k)), (5)

where yb ∈ Yb ⊆ {0, 1}pb .
A mode selector (MS) selects the dynamic mode i(k) of the SAS according to

the binary state xb(k), the binary inputs ub(k) and the events δe(k) using Boolean
function fM : Xb × Ub ×D → I. The output of this function

i(k) = fM (xb(k), ub(k), δe(k)) (6)

is called the active mode.

HYbrid System DEscription Language (HYSDEL)

DHA models can be modelled by using modelling language called HYSDEL as shown
in ([24]). The HYSDEL description of hybrid systems represents an abstract mod-
elling step. Once the system is modelled as DHA, i.e. described by the HYSDEL
language, the model can be translated into an MLD model using an associated HYS-
DEL compiler. At this point, we will give just a brief introduction into the structure of
a HYSDEL list.

A HYSDEL list is composed of two parts: the INTERFACE, where all the vari-
ables and parameters are declared, and the IMPLEMENTATION, which consists of
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specialised sections, where the relations between the variables are defined. Let us in-
troduce the most significant sections. The AD section allows the definition of binary
variables and is based on the semantics of the event generator (EG), i.e. in the AD
section the δe variables are defined. The LOGIC section allows the specification of ar-
bitrary functions of binary variables. Since the mode selector is defined as a Boolean
function, it can be defined in this section. The DA section defines the switching of the
continuous variables according to if-then-else rules depending on binary variables, i.e.
part of switched affine system (SAS), namely zi variables (see Equation (2)) are de-
fined. The CONTINUOUS section defines the linear dynamics expressed as difference
equations, i.e. defines the remaining Equation (2c) of the SAS. The LINEAR section
defines continuous variables as an affine function of continuous variables, which in
combination with the DA and the CONTINUOUS section enables more flexibility
when modelling SAS. The AUTOMATA section specifies the state transition equa-
tions of the finite state machine (FMS) as a Boolean function (4), i.e. defines binary
variables xb. The MUST section specifies constraints on continuous and binary vari-
ables, i.e. defines the sets Xr,Xb,Ur and Ub.

For more detailed description on the functionality of the modelling language HYS-
DEL and the associated compiler (tool HYSDEL), the reader is referred to [24, 25].

2.2. Mixed Logical Dynamical (MLD) Systems

In [7] a class of hybrid systems, called Mixed Logical Dynamical (MLD) systems,
has been introduced in which logic, dynamics and constraints are integrated. An MLD
system is described by the following relations:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (7a)

y(k) = Cx(k) + D1u(k) + D2δ(k)D3z(k) (7b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, (7c)

where x(k) = [xT
r (k) xT

b (k)]T (xr(k) ∈ R
nr , xb(k) ∈ {0, 1}nb ) are the states of a

system, outputs y(k) and inputs u(k) have similar decomposition as x(k), z(k) ∈ R
rr

are real and δ(k) ∈ {0, 1}rb binary auxiliary variables. A, B1, B2, B3, C, D1, D2, D3,
E1, ..., E5 are real constant matrices with suitable dimensions.

Using the current state x(k) and input u(k), the time evolution of (7) is determined
by solving δ(k) and z(k) from (7c), and then updating x(k + 1) and y(k) from Equa-
tions (7a) and (7b), respectively. The MLD system (7) is assumed to be completely
well-posed if for a given state x(k) and input u(k) the inequalities (7c) have a unique
solution for δ(k) and z(k). A simple algorithm to test well-posedness is given in [7].
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2.3. Piecewise Affine (PWA) Systems

A discrete-time piecewise affine system is defined by the state-space equations

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi

for

[
x(k)
u(k)

]
∈ Xi, (8)

where x(k) ∈ R
nr is the state, u(k) ∈ R

mr is the input, y(k) ∈ R
pr is the output, at

time instance k, {Xi}i=1,...,s is a polyhedral partition of the state-input space defined
by a system of inequalities {Hi

xx + Hi
uu ≤ Ki}. Ai, Bi, fi, Ci,Di, gi,H

i
x,Hi

u and
Ki are real matrices of suitable dimensions for all i. A PWA system (8) is well-posed
if x(k + 1) and y(k) have a unique solution for a given state x(k) and input u(k), i.e.
Xi ∩ Xj = ∅ ∀i 
= j, ∪s

i=1Xi = X.
For a more detailed description about PWA systems, the reader is referred to [21,

12, 16] and the references therein.

3. A NEW DHA (MLD) TO PWA TRANSLATION ALGORITHM

Two different translation approaches have already been proposed in the literature.
These are the translation of an MLD to a PWA form [4, 5] and a translation of a DHA
to a PWA form [13]. The motivation for these investigations lies in the fact that many
analysis and synthesis tools were developed for PWA systems. For instance, stability
criteria for PWA systems were proposed in [16, 18], observability and controllability
was studied in [8], reachability analysis in [2] and synthesis of optimal control laws in
[6].

The approach presented in this paper solves the problem similar to [4], where
the author translates an MLD model into an equivalent PWA model using multi-
parametric and mixed-integer programming, and deals with the same problem as in
[13], where authors translate DHA into a PWA form. Due to the characteristics of
the problem of translating DHA form of a hybrid system into PWA form the struc-
ture of the translation algorithm is similar to one in [13]. Compared to the technique
presented in [13], we introduce several novelties and improvements to the translation
algorithm to improve the performance. The performance of the translation algorithm
is very important as the complexity of the translation grows with the hybrid system
complexity, especially with the number of discrete states.

The first improvement presented in this paper is a new cell enumeration algorithm,
which is presented in Section 3.2, with lower time complexity than the one used in
[13]. The second improvement is the algorithm that defines (finds) feasible combina-
tions of binary states and inputs, which represents very important part of the trans-
lation technique. The description of the problem and the solution algorithm is given
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in Section 3.3. The third improvement (novelty) is a new post-processing operation,
presented in Section 3.5, which reduces the number of polyhedral cells in the PWA
system, i.e. merging the regions (cells) with the same affine dynamics and where the
union remains convex.

3.1. DHA and PWA Systems

For better understanding, a summary of the equivalence between DHA and PWA sys-
tems, proven in [13], will be given. By considering fixed binary variables δ̄e, x̄b and
ūb, we obtain the following PWA system:

xr(k + 1) = AfM (x̄b,ūb,δ̄e)xr(k) + BfM (x̄b,ūb,δ̄e)u(k) + ffM (x̄b,ūb,δ̄e) (9a)

xb(k + 1) = fB(x̄b, ūb, δ̄e) (9b)

yr(k) = CfM (x̄b,ūb,δ̄e)xr(k) + DfM (x̄b,ūb,δ̄e)u(k) + gfM (x̄b,ūb,δ̄e) (9c)

yb(k) = gB(x̄b, ūb, δ̄e) (9d)

if xb(k) = x̄b, ub(k) = ūb, [xT
r (k) uT

r (k)]T ∈ Xδ̄e
, (9e)

where the functions fM , fB and gB are defined by Equations (4),(5) and (6) respec-
tively. By collecting x = [xr

xb] and y = [yr
yb] the system (9) is formally equivalent to

PWA system (8). The question is how to define δ̄e, x̄b and ūb? By considering the
worst case, there exist 2(ne+nb+mb) possible combinations of the binary variables
(δe, xb, ub), but in general most of them are infeasible due to the system operating
limitations. The solution to the given problem will be given in the following sections.

3.2. Defining binary variable δe

In this section, we will address the problem of defining the binary variable δe that
is defined by Equation (3) that represents the event generator (EG). The problem of
defining the binary variable δe according to the fulfilment of the relation fH in (3)
can be described as a cell enumeration problem. To each cell described by one set
of inequalities of the form aT xr(k) + bT ur(k) ≤ c exactly one combination of the
binary variable δe is assigned.

In [13], the authors adopted an algorithm that enumerates all feasible modes for
binary variable δe, i.e. defines a set D, using an efficient algorithm for cell enumeration
in hyperplane arrangement presented in [3, 11]. In the sequel, we will propose a new
technique for cell enumeration, which is better performing than the existing one.
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A new technique for cell enumeration in a hyperplane arrangement

Here, we will adopt the notation to the problem of enumerating the cells as presented
in [3]. Let A be an arrangement of n distinct hyperplanes {Hi}i=1,...,n in R

d, where
each hyperplane is given by a linear equality Hi = {x : aix = bi}, where ai and bi

represent the i-th row of A and b, respectively. For each x ∈ R
d, the sign vector SV (x)

is the vector in {+, 0,−}n defined by

SV (x)i =




+ if aix < bi

0 if aix = bi

− if aix > bi

for i ∈ {1, ..., n}. (10)

Figure 2 shows an example of n = 4 hyperplanes in R
2 with appropriate sign vec-

tors. Let S be the set of sign vectors s where s = {SV (x) : x ∈ R
d} and the set

Cs = {x : SV (x) = s} be a subspace of the state space for a given sign vector s. The
set Cs is called a cell of the arrangement and is a polyhedron defined by equalities
and inequalities. According to the way the time and threshold events are modelled
(see Section 2.1- Event Generator), we reformulate the definition of SV (x) (see (10))
without loss of generality to:

SV (x)i =

{
+ if aix ≤ bi

− if aix > bi.
for i ∈ {1, ..., n} (11)

Actually this step is necessary to embrace all possible situations correctly, i.e. to
define all possible cells. It is obvious that the definition (10) yields a larger set S than
it is of our interest, i.e. many sign vectors with zero entries are irrelevant, but not all,
e.g., a hyperplane itself may represent a cell.

We say that hyperplanes {Hi}i=1,...,n are in a general position if there are no par-
allel hyperplanes and if any point in R

d belongs, to at most, d hyperplanes. The upper
bound of the number of hyperplanes is defined by [9]:

�C(n,d) ≤
d∑

i=0

(
n

i

)
for n ≥ d and

�C(n,d) ≤ 2n for n < d

(12)

or recursively �C(n,d) ≤ �C(n−1,d) + �C(n−1,d−1), where �C(0,d) = �C(n,0) = 1. The
equality holds when the hyperplanes are in the general position.

To summarise, the goal is to enumerate all the cells defined by a hyperplane ar-
rangement. To this end, we propose the following cell enumeration algorithm:
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Fig. 2. An arrangement of four hyperplanes in R
2 with the sign vectors

Algorithm 1:

Initialise
Get(A, b);
S =

[−1 −1 ... −1
]
; (* initialise the set S *)

for i = 1 to n do
numS=NumRows(S); (* current number of cells *)
S = [S;S]; (* add a hyperplane; double the number of cells *)
for j = 1 to numS

S(j, i) = 1; (* adjust the signs to a half of the cells *)

end
for k = 1 to 2 · numS

CheckFeasibility(S(k, 1 : i), A(1 : i, :), b(1 : i, :));
if Infeasible

RemoveFromList(S(k, :));
end

end
end

Algorithm 1 solves the cell enumeration problem by taking one hyperplane at a
time. When a hyperplane is added, the number of cells is doubled due to splitting
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the state space. This is handled by duplicating the set S and assigning the correct
sign values related to the added hyperplane (1 corresponds to “+” and −1 to “−”, see
Equation (11)). To remove the infeasible sign vectors from the set S, the feasibility test
is run for all defined sign vectors. Only the part of S, A and b related to the processed
hyperplanes is considered. As soon as all hyperplanes are processed, the feasible set
of signs S is defined and, consequently, the set of cell arrangements Cs is defined as
well.

The worst case time complexity of Algorithm 1 is estimated to O(lp(n, d) ·
�LP(n,d)), where lp(n, d) is the time needed to run one feasibility test, using linear
program (LP), for n hyperplanes in d dimensions. �LP(n,d) is the number of feasibility
tests (LP runs) for (n, d) problem and is calculated as:

�LP(n,d) ≤ 2
n−1∑
i=1

�C(i,d). (13)

The equality holds when the hyperplanes are in general position. The worst case
time complexity of the proposed algorithm is lower than the one proposed in [3],
improved in [11] and used in [13], where the time complexity is estimated to O(n ·
lp(n, d) · �C(n,d)). Considering Equations (12) and (13), we can write n · �C(n,d) −
�LP(n,d) = �C(n,d) +

∑n−1
i=1

[
i · �C(i,d−1) − �C(i,d)

]
, which implies �LP(n,d) < n ·

�C(n,d). The comparison of the worst case time complexities for both algorithms is
shown in Figure 3.
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Fig. 3. The comparison (a) and the difference (b) of the time complexities (note that the z-axis is in
logarithmic scale)

From Figure 3, it can be noticed that by increasing the number of hyperplanes n
and the dimension d of the cell enumeration problem, the difference of the worst case
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time complexities of the algorithms grows very fast. Of course, the calculated worst
case complexity represents an estimation of the upper bound. For this reason, one may
consider if there are cases where the hyperplanes are in general position and the algo-
rithm applied in [13] is faster than the one proposed here. Considering the difference
of the worst case time complexity (see Figure 3(b)), it is obvious that by increasing
the number of hyperplanes n or dimension d of the enumeration problem the possibil-
ity of this happening is decreasing very rapidly. Besides, the difference in the perfor-
mance of both approaches for small problems (low number of hyperplanes/dimension)
is negligible. More interesting is the case where the number of cells in an arrangement
is much lower compared to the maximum number of cells estimated using Equation
(12). This happens when the hyperplanes are not in general position, e.g. some of the
hyperplanes are parallel to each other. Sorting the hyperplanes in proper order, e.g.
parallel hyperplanes first, which is easy to implement, can additionally improve the
performance of the cell enumeration algorithm presented in this paper. The algorithm
adopted in [13] starts the enumeration of cells from a cell that is randomly selected
[3, 11] and, therefore, by rearranging the hyperplanes the performance of the algo-
rithm cannot be improved.

3.3. Defining binary states xb and inputs ub

The cell enumeration algorithm presented in the previous section will be used to define
binary variable δe in a DHA to PWA translation algorithm. We still have to define all
feasible combinations of binary variables (xb, ub), i.e. to each binary variable δe ∈ D a
feasible combination of binary states and inputs xb ∈ Xb, ub ∈ Ub has to be associated
in order to define a PWA submodel (see Equation (9)). In the worst case, we have to run
�C · 2(nb+mb) feasibility tests, i.e. we have to test all possible combinations of binary
variables (xb, ub), for each feasible combination of the vector δe ∈ D. Of course, the
number of feasible combinations of binary variables (xb, ub) can be much lower due
to logic constraints, which can include also a combination with binary variable δe.

In [13], the authors define feasible combinations of binary variables (xb, ub) by
applying binary search. By looking at the MATLAB implementation of the DHA to
PWA translation algorithm, Piecewise Affine (PWA) Plugin: hys2pwa 1.1.3, which
is available on the internet site http://control.ee.ethz.ch/ hybrid/hysdel/,
the authors check for feasibility for each possible combination of (xb, ub), i.e. run
worst case 2(nb+mb) logic feasibility tests (without applying linear program) consid-
ering logic constraints on binary variables (xb, ub).

In this paper, we propose a different approach to defining all feasible combinations
of binary variables (xb, ub). The proposed algorithm uses the same principle as it is
used in the cell enumeration algorithm presented previously. One element of binary
variables (xb, ub) is taken at once. Each next element of (xb, ub) is added to the set
of possible combinations of already defined elements by extending the current set
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with new possible combinations. The resulting set is checked for feasibility using
appropriate logic constraints (without applying linear program), i.e. constraints for
which all the elements are defined, and only the feasible combinations remain in the
set. The procedure is repeated until all the feasible combinations of binary variables
(xb, ub) are defined. To this end, we propose the following algorithm:

Algorithm 2:

Initialise
Get(Axu, bxu); (* logic constraints Axu[xT

b , uT
b ]T ≤ bxu *)

XU =
[
0 0 ... 0

]
; (* initialise the set XU *)

nxu = NumberOfElements(xb, ub);
for i = 1 to nxu do

numXU=NumRows(XU ); (* number of feasible combinations *)
(* add a binary variable xb or ub *)
XU = [XU ;XU ]; (* double the number of combinations *)
for j = 1 to numXU

XU(j, i) = 1; (* set first half to 1 *)

end
for k = 1 to 2 · numXU

rows=FindCorespondingConstraints(Axu, bxu);
if NotEmpty(rows)

CheckLogicFeasibility(XU , Axu(rows, :), bxu(rows, :));
if Infeasible

RemoveFromList(XU(k, :));
end

end
end

end,

where XU is a set of feasible combinations for (xb, ub).
Every time new element is defined Algorithm 2 removes infeasible combinations

according to constraints valid for already defined elements. This enables the control of
the growth of possible combinations of binary variables (xb, ub) constrained by logic
constraints. In the worst case, if there are no logic constraints, the growth is exponen-
tial, but we don’t have to run logic feasibility tests. By increasing the number of logic
constraints the number of logic feasibility tests is increasing too, but the growth of
possible combinations of binary variables (xb, ub) is decreasing and that is the most
important. Thus, the complexity of Algorithm 2 depends on the composition and the
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number of logic constraints and is therefore different from case to case. The perfor-
mance can be even improved, by sorting the components of the binary vectors (xb, ub)
according to logic constraints, i.e. we first sort the components, which appear in the
rows of [Axu, bxu] with the least elements. In comparison with the cell enumeration
algorithm presented previously, the concept is the same but in this case, the infeasible
combinations are not defined by hyperplanes but with logic constraints.

Considering that we have already defined a feasible set D from S applying Algo-
rithm 1, we can extend Algorithm 2 such that it includes that available information,
as usually the logic constraints include δe, xb and ub variables. This can be done by
initialising Algorithm 2 with XU = [D,0] and by considering expanded logic con-
straints Aδexu and bδexu. This enables online removal of infeasible combinations of
binary variables (δe, xb, ub) while searching for feasible combinations of (xb, ub). The
number of logic feasibility tests is, therefore, much lower than �C · 2nb+mb . The given
extension is implemented in DHA to PWA translation algorithm given in the sequel.

3.4. DHA to PWA translation algorithm

Once a hybrid system is modelled using HYSDEL modelling language the resulting
DHA model can be transformed into a special structure [25], which defines an MLD
model of a system, but can also be used for a starting point for other algorithms trans-
lating DHA into other computational models. The structure contains, besides the MLD
form, additional information about the relations between the variables (continuous and
binary (Boolean)), the section in which they are defined (AD, LOGIC, ...) and com-
putable order. The computable order defines the priority for computation. Variables
with lower computable order have to be defined prior to the variables with higher
order. The resulting structure is used in the translation algorithm from DHA to PWA.

For a better understanding of the translation algorithm, which will be given in the
sequel, we introduce the following variables and sets: δAD represents binary vari-
ables defined in AD section and are equivalent to the δe defined previously; the set
AD = {δi

AD}i=1,...,�C contains all possible combinations of the variable δAD; δLO

represents binary variables defined in LOGIC section and are used as auxiliary bi-
nary variables; the set LO = {δi

LO}i=1,...,�LO contains all possible combinations of
the variable δLO; zDA represents continuous variables defined in DA section; the
set DA = {zi

DA}i=1,...,�DA contains all possible combinations of the variable zDA,
where each element zi

DA is represented by the set of matrices {Ki
1,K

i
2,K

i
3}, sub-

ject to zi
DA = Ki

1x + Ki
2u + Ki

3; zLI represents continuous variables defined in LIN-
EAR section; the set LI = {zi

LI}i=1,...,�LI contains all possible combinations of the
variable zLI , which is defined analogically to zDA, and sets XB = {xi

b}i=1,...,�XB

UB = {ui
b}i=1,...,�UB contain all possible combinations of the variables xb and ub

respectively. The meaning of the variables is strongly correlated with the sections in
which they are defined, and consequently to the DHA form.
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The translation algorithm from DHA to PWA is described by the following algo-
rithm:

Algorithm 3:

Initialise
H=HysdelStructure(DHA); (* using HYSDEL *)
MaxOrder=GetMaxOrder(H); (* find maximal computable order *)
Initialise {DA,LI,LO};
Initialise {ADXU}; (* (δAD, xb, ub) *)
for i=1 to MaxOrder do

for all(H.AD.CompOrder = i) do
define δAD variables using Algorithm 1;
check logic constraints, update {ADXU};

end
for all(H.LO.CompOrder = i) do

if not all elements in xb, ub required for δLO are defined,

define required elements in xb, ub using Algorithm 2;
check logic constraints, update {ADXU};

end
define δLO, check logic constraints, update {LO};

end
for all(H.DA.CompOrder = i) do

if not all elements in xb, ub required for zDA are defined,

define required elements in xb, ub using Algorithm 2;
check logic constraints, update {ADXU};

end
define zDA, update {DA};

end
for all(H.LI.CompOrder = i) do

define zLI , update {LI};

end
end
(* Set {ADXU} is defined *)
for all((δAD, xb, ub) ∈ {ADXU}) do

define PWA system according to (9);

end
check for all the regions in PWA with the same affine
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dynamics for possible merging into common convex regions;

Algorithm 3 enumerates all feasible modes for variables (δe, xb, ub), (note that δe

is associated to δAD) and builds corresponding PWA model. Feasible modes for δe =
fH(xr, ur, zDA, zLI , k) are enumerated using Algorithm 1, while feasible modes for
(xb, ub) are enumerated using Algorithm 2. As soon as all feasible combinations for
variables (δe, xb, ub) are defined, the PWA form of a DHA system is defined. Finally,
the merging of the regions of the PWA system with the same affine dynamics into
common convex regions may be applied.

3.5. Merging the regions with the same affine dynamics

The number of polyhedral regions (cells) in the PWA system can be reduced by merg-
ing the regions with the same affine dynamics into common convex regions. The pro-
posed procedure is based on the Quine-McCluskey [20, 19] minimisation algorithm of
Boolean functions.

Considering Equation (9), we notice that the PWA dynamic is defined by
three Boolean functions fM , fB and gB that are defined by the variables xb, ub

and δe (δAD). Let us group feasible combinations of variables (δe, xb, ub)
into sets Maff = {(δe, xb, ub) : fM (δe, xb, ub) = faff

M , fB(δe, xb, ub) = faff
B ,

gB(δe, xb, ub) = gaff
B , Daff [δT

e , xT
b , uT

b ]T = daff}, for a given affine dynamics
faff

M , faff
B , gaff

b and fixed combination of some binary variables (δe, xb, ub) defined
by Daff [δe, x

T
b , uT

b ]T = daff . In general, certain components of binary vector δe can
be indirectly dependent on some components of binary variables(δe, xb, ub) and by
merging these cells we can not guarantee that the resulting cell will remain convex.
The matrix Daff and the vector daff are introduced to embrace those indirectly
dependent components of binary vector δe.

By considering each set Maff as a Boolean function represented by the truth ta-
ble, the Quine-McCluskey minimisation algorithm of Boolean functions can be used.
The result is the reduced representation Mreduced

aff of the set Maff , i.e. the reduced
number of regions that define the same affine dynamics. By modifying the PWA sys-
tem according to reduced representations for all Mreduced

aff the reduced PWA system
is obtained. If there is no dependence of some components of binary variable δe on
some components of binary variables (δe, xb, ub), i.e. Daff = 0 and daff = 0, the
obtained reduced PWA system is in minimal form.
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4. AN EXAMPLE

The efficiency of the proposed translation technique was tested on a hybrid model of
a car with a robotised gear shift, presented in [23, 24]. The HYSDEL model of the
car is reported in [24] and [4]. The car model has nr = 2 continuous states (position
and velocity of the car), no logic states, mr = 2 continuous inputs (engine torque and
braking force), mb = 6 binary inputs (gears �1, ..., �5 + reverse gear).

Applying Algorithm 3 to the car example returns a PWA structure containing 30
regions, i.e. 30 PWA submodels, and is computed in 1.45 seconds using MATLAB
5.3 on a Pentium III 667 MHz machine. This is 50 times faster than reported in [4]
and 5 times faster than reported in [13], considering that all three approaches run on a
similar machine.

5. CONCLUSIONS

In this paper, a new technique was proposed for translating DHA systems described
by the HYSDEL modelling language into equivalent PWA systems. The technique is
based on the new cell enumeration in hyperplane arrangement algorithm presented in
Section 3.2, on the new approach to defining all feasible combinations of binary vari-
ables (xb, ub) presented in Section 3.3 and on the merging algorithm to reduce the size
of a PWA representation presented in Section 3.5. An efficient translation technique is
important to increase the usability of several analysis and synthesis tools developed for
PWA systems while using the tool HYSDEL in which relatively complex hybrid sys-
tems composed of linear dynamics, finite state machines, propositional logic, etc., can
be described. The proposed algorithm can be used to translate all kinds of HYSDEL
models into PWA form.
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